The Number of Solutions of X^2=0 in Triangular Matrices Over GF(q)

نویسندگان

  • Shalosh B. Ekhad
  • Doron Zeilberger
چکیده

We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. Theorem. The number of n × n upper-triangular matrices over GF (q) (the finite field with q elements), whose square is the zero matrix, is given by the polynomial C n (q), where, C 2n (q) = j 2n n − 3j − 2n n − 3j − 1 · q n 2 −3j 2 −j , C 2n+1 (q) = j 2n + 1 n − 3j − 2n + 1 n − 3j − 1 · q n 2 +n−3j 2 −2j. Proof. In [K] it was shown that the quantity of interest is given by the polynomial A n (q) = r≥0 A r n (q), where the polynomials A r n (q) are defined recursively by A r+1 n+1 (q) = q r+1 · A r+1 n (q) + (q n−r − q r) · A r n (q) ; A 0 n+1 (q) = 1. (Sasha) For any Laurent formal power series P (w), let CT w P (w) denote the coefficient of w 0. Recall that the q-binomial coefficients are defined by m n q := (1 − q m)(1 − q m−1) · · · (1 − q m−n+1) (1 − q)(1 − q 2) · · · (1 − q n) , (Carl) whenever 0 ≤ n ≤ m, and 0 otherwise. Lemma 1. We have A r n (q) = CT w (1 − w)(1 + w) n q r(n−r)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D ec 1 99 5 An Explicit Formula for the Number of Solutions of X 2 = 0 in Triangular Matrices Over a Finite Field

X iv :m at h/ 95 12 22 4v 1 [ m at h. C O ] 1 9 D ec 1 99 5 An Explicit Formula for the Number of Solutions of X = 0 in Triangular Matrices Over a Finite Field Shalosh B. EKHAD and Doron ZEILBERGER Abstract: We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. This formula was recently conjectured by Sasha Kirillov and Ann...

متن کامل

NUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS

We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

A module theoretic approach to‎ ‎zero-divisor graph with respect to (first) dual

Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...

متن کامل

On the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$

The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1996