The Number of Solutions of X^2=0 in Triangular Matrices Over GF(q)
نویسندگان
چکیده
We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. Theorem. The number of n × n upper-triangular matrices over GF (q) (the finite field with q elements), whose square is the zero matrix, is given by the polynomial C n (q), where, C 2n (q) = j 2n n − 3j − 2n n − 3j − 1 · q n 2 −3j 2 −j , C 2n+1 (q) = j 2n + 1 n − 3j − 2n + 1 n − 3j − 1 · q n 2 +n−3j 2 −2j. Proof. In [K] it was shown that the quantity of interest is given by the polynomial A n (q) = r≥0 A r n (q), where the polynomials A r n (q) are defined recursively by A r+1 n+1 (q) = q r+1 · A r+1 n (q) + (q n−r − q r) · A r n (q) ; A 0 n+1 (q) = 1. (Sasha) For any Laurent formal power series P (w), let CT w P (w) denote the coefficient of w 0. Recall that the q-binomial coefficients are defined by m n q := (1 − q m)(1 − q m−1) · · · (1 − q m−n+1) (1 − q)(1 − q 2) · · · (1 − q n) , (Carl) whenever 0 ≤ n ≤ m, and 0 otherwise. Lemma 1. We have A r n (q) = CT w (1 − w)(1 + w) n q r(n−r)
منابع مشابه
D ec 1 99 5 An Explicit Formula for the Number of Solutions of X 2 = 0 in Triangular Matrices Over a Finite Field
X iv :m at h/ 95 12 22 4v 1 [ m at h. C O ] 1 9 D ec 1 99 5 An Explicit Formula for the Number of Solutions of X = 0 in Triangular Matrices Over a Finite Field Shalosh B. EKHAD and Doron ZEILBERGER Abstract: We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. This formula was recently conjectured by Sasha Kirillov and Ann...
متن کاملNUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS
We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملA module theoretic approach to zero-divisor graph with respect to (first) dual
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
متن کاملOn the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$
The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 3 شماره
صفحات -
تاریخ انتشار 1996